血小板低是什么症状| evisu是什么牌子| 甲醛闻多了有什么症状| 谷丙转氨酶是检查什么的| 黄褐色是什么颜色| 也字少一竖念什么| 女孩为什么难得午时贵| 罗刹女是什么意思| 甲状腺吃什么药好| 科班出身是什么意思| 双生是什么意思| 腿脚肿胀是什么原因引起的| 外阴长水泡是什么原因| 什么猫掉毛少| 晨僵是什么症状| 十二是什么意思| 瓜子脸剪什么发型好看| 暖宫贴贴在什么位置| 补充蛋白质提高免疫力吃什么| 什么是心脏早搏| 肝ca是什么意思| a型血的人容易得什么病| 爱出汗是什么原因女人| 息肉是什么原因引起的| 敲定是什么意思| 4月24号是什么星座| 产假什么时候开始休| 脾肾两虚吃什么中成药| cartoon什么意思| 情绪波动是什么意思| 小妮子什么意思| 可甜可盐什么意思| 梦见自己买衣服是什么意思| 吃什么可以去湿气| iq是什么意思| 蛇缠腰是什么病| 孕妇流鼻血是什么原因| 菜场附近开什么店好| 灰什么| 吕布的马叫什么名字| 肉包子打狗的歇后语是什么| 白手套什么意思| 宋江是一个什么样的人| 高血压会引起什么病症| 手上起小水泡痒是什么原因| 什么是肛漏| 什么地摇动| 白细胞低有什么危险| 闫和阎有什么区别| 木兮是什么意思| 吃完油炸的东西后吃什么化解| 脉弦是什么意思| 舌尖起泡是什么原因| 便黑色大便是什么情况| 方寸之地什么意思| 什么是嗳气有何症状| 4月30号是什么星座| 嗓子哑是什么病的前兆| fnh是什么病| 买车置换是什么意思| 一天中什么时候最冷| 苋菜与什么食物相克| 筱的意思是什么| 银花有焰万家春是什么生肖| 夏天像什么| 沉稳是什么意思| 猴子捞月是什么生肖| 前列腺特异性抗原是什么意思| 时光荏苒的意思是什么| 乳腺炎吃什么药| 蕊字五行属什么| 上甘岭在什么地方| 什么的超市| 属马五行属什么| 阳气不足吃什么中成药| 夏天用什么带饭不馊| cybex是什么牌子| 脸上涂什么可以美白| 子宫肌瘤吃什么药| 不可抗力是什么意思| 都市丽人什么意思| 羊肉水饺配什么菜好吃| bj是什么| 玛瑙是什么材质| 异性朋友是什么意思| 水木年华是什么意思| 彪马属于什么档次| 腹泻吃什么| tct是什么| 逆水行舟什么意思| 什么原因导致荨麻疹| 布衣蔬食是什么意思| 闰六月要给父母买什么| 什么病| 经常掏耳朵有什么危害| 奶茶有什么危害| acu是什么| 彼此彼此什么意思| 什么是央企| 人授后吃什么容易着床| 高什么亮什么成语| 云朵像什么| iu是什么意思| 苏铁属于什么植物| 悠哉悠哉是什么意思| 白马怕青牛是什么意思| 张牙舞爪是什么生肖| 泌尿系彩超主要是检查什么| 神经性头疼是什么原因造成的| 智齿肿痛吃什么药| 喉咙痛鼻塞吃什么药| 打耳洞去医院挂什么科| 什么回忆| 红色的月亮是什么征兆| 班别是什么意思| 春天像什么| 酥油茶是什么做的| 指滑是什么意思| 无休止是什么意思| 禄蠹是什么意思| 一什么方向| 梦见苍蝇很多是什么意思| 油腔滑调指什么生肖| 婴儿眼屎多是什么原因| ab型血为什么容易得精神病| 性激素六项是什么| 养老金什么时候可以领取| 手臂发麻是什么原因引起的| 青鱼吃什么| 什么玉好| 浪子回头金不换是什么意思| 男人腰痛吃什么药| 嗔什么意思| 梦见哭是什么意思| 反复发烧吃什么药| 今年27岁属什么生肖| 指什么为什么| 蜈蚣是什么生肖| 骏五行属什么| 为什么天天做梦| 怀孕初期分泌物是什么样的| 韧带拉伤吃什么药| 什么是走读生| 灰棕色是什么颜色| 发烧能吃什么食物| 领证需要准备什么| 碳化是什么意思| 动态密码是什么意思| 小个子适合什么发型| 3e是什么意思| 梦见和别人打架是什么意思| 40岁属什么| 什么叫排卵期| 皮皮虾吃什么| 什么是用神| 八面玲珑代表什么生肖| 犯困是什么原因| 中学为体西学为用是什么意思| 冷藏是什么意思| 什么茶最好喝| icd医学上是什么意思| 双字五行属什么| 得了咽炎有什么症状| 软助什么意思| dostinex是什么药| 为什么掉头发很厉害| des是什么意思| 寅时五行属什么| 草字头一个见念什么| 早上9点半是什么时辰| 四大皆空是什么意思| 企鹅代表什么生肖| 高晓松为什么进监狱| 早上五点是什么时辰| 白炽灯属于什么光源| 花儿乐队为什么解散| 什么瓜不能吃脑筋急转弯| 没出息什么意思| 飞马是什么意思| 左耳嗡嗡响吃什么药| 什么是真爱| 防小人应该佩戴什么| 嘴角发黑是什么原因| 鲜黄花菜含有什么毒素| 马脸是什么脸型| 旗开得胜是什么意思| 男性感染支原体有什么症状| 人造珍珠是什么材质| 过敏性咽炎吃什么药| 什么矿泉水最贵| 什么的口罩| 走水是什么意思| 土黄色裤子配什么颜色上衣| 93鸡和94狗生什么宝宝| 婴儿便便是绿色的是什么原因| 连续打喷嚏是什么原因| 签证和护照有什么区别| 肾阳虚是什么原因引起的| 鬼针草长什么样| edenbo是什么牌子| 思利及人是什么意思| 血红蛋白高是什么原因| 刘秀和刘邦是什么关系| 回笼觉是什么意思| 脖子红是什么原因| 梦到砍树是什么意思| 胃肠炎吃什么药| 紧急避孕药对身体有什么伤害| hdv是什么病毒| 家里为什么会有跳蚤| 血红蛋白低吃什么| 普工是什么| 蛇是什么动物| 令人唏嘘是什么意思| 什么笔不能写字| 40周年是什么婚| 血脂厚有什么症状| 什么是亚健康| 9月9号是什么星座| 西柚是什么水果| 萎缩性胃炎吃什么中成药| 四库是指什么| 为什么感冒会咳嗽| cd什么意思| 什么是老赖| 摊手是什么意思| 阿司匹林治疗什么病| 陶渊明是什么先生| 271是什么意思| 心电图是检查什么的| 孕妇前三个月吃什么对胎儿好| 倾国倾城是什么生肖| 江西是什么菜系| 吃什么长个子| 墙头草是什么意思| 钢琴10级是什么水平| 多种维生素什么时候吃效果最好| 机械键盘什么轴最好| 悬雍垂发炎吃什么药| 鸡奸是什么意思| 8月5日是什么星座| 气血不足吃什么食物| 吃什么助消化| 白痰咳嗽用什么药最好| 梦见把老鼠打死是什么意思| 斑秃吃什么药| 吃烧烤后吃什么水果可以帮助排毒| 全会是什么意思| 锁阳泡酒有什么功效| 1618是什么意思| 止境是什么意思| 召力念什么| 头陀是什么意思| 92是什么| 几成是什么意思| 性功能障碍吃什么药| 79年属什么的生肖| 眼睛干涩用什么眼药水| 2038年是什么年| 总恶心是什么原因| c5是什么驾驶证| 拉尿分叉是什么原因| 小暑是什么时候| 甲醇和乙醇有什么区别| 百度Edukira joan

戏曲电影“消亡”声中如何突围? 艺术形式大胆出新

Artikulu hau Wikipedia guztiek izan beharreko artikuluen zerrendaren parte da
Artikulu hau "Kalitatezko 2.000 artikulu 12-16 urteko ikasleentzat" proiektuaren parte da
Hau artikulu on bat da. Egin klik hemen informazio gehiagorako.
Wikipedia, Entziklopedia askea
百度 鲜为人知的世界第一立佛——八仙山大佛,正位于龙华古镇西面的八仙山上。

DNAren helize bikoitz itxurako egitura.

Azido desoxirribonukleikoa (oro har DNA siglarekin laburtua; edota, batzuetan, ADN siglarekin)[oh 1] azido nukleiko mota bat da, organismo bizi[1] guztien funtzionamendu eta garapenaren informazio genetikoa duena eta bere transmisioaren erantzulea dena.

Ikuspuntu kimikotik, DNA nukleotidoen polimero bat da; hau da, polinukleotido bat.[2] Elkarrekin lotutako unitate sinple askoz osatutako polimero konposatua da, bagoi askoz osatutako tren baten antzekoa. DNAn bagoi bakoitza nukleotido bat da, eta, aldi berean, nukleotido bakoitza azukre (desoxirribosa), base nitrogenatu (adenina (A), timina (T), zitosina (C) alaguanina (G)) eta fosfato talde batez osatuta dago; azken horrek bagoiak elkarren artean lotzen ditu. Bagoi edo nukleotido bat bestetik bereizten duena base nitrogenatua da; horregatik, DNA sekuentzia base nitrogenatuak aipatuz bakarrik izendatzen da. Lau base horiek sekuentzian duten ordena informazio genetikoa kodifikatzen duena da, esaterako, ATCGATCG... Organismo bizietan, DNA nukleotido kate bikoitz moduan agertzen da, non bi kateak hidrogeno zubien bidez lotuta agertzen diren.[3]

Zelulak, DNAk duen informazioa erabili ahal izateko, nukleotidoak RNA (azido erribonukleikoa) molekulak emanez kopiatzen dira. RNA molekulak DNAtik kopiatzen dira transkripzio izeneko prozesu baten bidez. RNA molekula hauek, nukleoan prozesatu ondoren, zitoplasmara irteten dira erabiliak izateko. RNAk duen informazioa kode genetikoa erabiliz itzultzen da proteinen aminoazido sekuentziak osatuz. Nukleotido hirukote (kodon) bakoitzak aminoazido bat emango du, eta, ondoren, aminoazido hauek elkartuko egingo dira lotura peptidikoen bidez proteinak osatuz. RNA erabiliz proteinak sintetizatzeko prozesu honi, itzulpena esaten zaio.

Herentziaz arduratzen diren eta DNAren sekuentzian ezinbestekoak diren unitateak geneak dira. Gene bakoitzak RNAra transkribatuko den zati bat eta noiz eta non espresatuko den definitzeaz arduratuko den beste zati bat ditu. Geneetan dagoen informazioa zelularentzat ezinbestekoak diren RNA eta proteinak sintetizatzeko erabiltzen da.

Zelularen barnean, DNA kromosoma izeneko egitura batzuetan antolatuta dago. Hauek, ziklo zelularrean zelula banandu aurretik, bikoiztu egiten dira. Organismo eukariotoek (animalia, landare eta onddoek) bere DNAren gehiengoa zelularen nukleoan gordetzen dute, eta, gainerakoa, mitokondria eta kloroplastoetan. Prokariotoek (bakterioak eta arkeoak), zelularen zitoplasman gordetzen dute, eta birusek, aldiz, proteinazko kapsidaren barnean. Kromosoma hornidura guztiaren materia genetikoa, genoma izenez ezagutzen da, eta espezie bakoitzaren ezaugarria da.

Friedrich Miescher, 1895ean hil zen mediku suitzarra.

DNA 1869ko neguan isolatu zuen lehenengo aldiz Friedrich Miescher suitzar medikuak Tubingengo Unibertsitatean lan egiten zuenean. Erabilitako benda kirurgikoetako zornearen konposaketa kimikoari buruzko esperimentuak egiten ari zela, hauspeatuta zegoen substantzia ezezagun bat ikusi zuen.[4][5] "Nukleina" izena eman zion, zelulen nukleotik erauzi baitzuen.[6] Ia 70 urtetako ikerketa behar izan zen azido nukleikoen egitura eta osagaiak identifikatu ahal izateko.

1919an, Phoebus Levenek argitu zuen nukleotidoak, izan ere, base, azukre eta fosfatoz osatuta zeudela.[7] Levenek proposatu zuen DNAk solenoide (malguki) itxurako egitura eratzen zuela eta nukleotido unitateak fosfato taldeen bidez elkartuta zeudela. 1930ean, Levenek eta bere maisu Albrecht Kosselek frogatu zuten nukleina lau base nitrogenatu (zitosina (C), timina (T), adenina(A) eta guanina(G)), desoxirribosa azukre eta fosfato talde batez osatutako azido desoxirribonukleikoa zela eta bere oinarrizko egitura base eta fosfato bati lotutako azukrea[8] zela. Aitzitik, Levenek katea motza zela eta baseak ordena jakin bati jarraituz errepikatzen zirela uste zuen. 1937an, William Astburyk DNAk egitura erregularra zuela erakusten zuen X izpien lehen difrakzio patroia asmatu zuen.[9]

Maclyn McCarty Francis Crick eta James D Watsonekin.

DNAren funtzio biologikoa 1928an hasi zen argitzen Frederick Griffith Pneumococcus, bakterioaren andui batzuekin lanean ari zela, genetika modernoaren esperimentu batzuk burutu zituenean. Neumokokoaren andui batzuk "leunak" (S) ziren, eta beste batzuk "zimurrak" (R); horren arabera, bakterioaren birulentzia aldakorra zen.

Arratoiei S neumokoko biziak injektatuz, haien heriotza gertatzen zen, baina R neumokoko biziak edo beroaren eraginez hildako S neumokokoekin ez zirela hiltzen ikusi zuen Griffithek. Hala ere, R neumokoko biziak eta S neumokoko hilak, aldi berean, injektatuz gero, arratoiak hil egiten ziren, eta, beren odolean, S neumokoko biziak isolatzen ziren. Hildako bakterioak arratoiaren barnean bikoiztea ezinezkoa denez, Griffithek "printzipio transformatzaile" deitu zuen arrazoinamendu bat egin zuen. Teoria horrek, substantzia aktibo baten transferentziaren bidez, bakterio mota batetik besterako aldaketa gertatzen zela azaltzen zuen. Substantzia honek R neumokokoei kapsula azukretsu bat sortu, eta, horrela, birulentoak bihurtzea ahalbideratuko lieke.

Hurrengo 15 urteetan, bakterioaren andui desberdinen konbinaketak erabiliz, behin eta berriz errepikatu ziren esperimentu hauek, bai arratoietan (in vivo) eta bai saio hodietan (in vitro) ere.[10] Hasiera batean, birulentoak ez ziren anduiak birulento bihurtzeko gaitasuna zuen printzipio transformatzailearen bilaketak 1944ra arte jarraitu zuen. Urte horretan, Oswald Avery, Colin MacLeod eta Maclyn McCartyk gaur egun klasikoa den esperimentu bat eraman zuten aurrera. Ikertzaile hauek frakzio aktiboa (printzipio transformatzailea) erauztea lortu zuten, eta, analisi kimiko, entzimatiko eta serologikoei esker, ez zuela proteina, lipido edo polisakarido aktiborik ikusi zuten. Azido desoxirribonukleikoaren forma likatsu eta oso polimerizatu batez osatuta zegoela ikusi zuten, hau da, DNA[11].

Beroaren bidez hildako S neumokokoetatik erauzitako DNA, hala, R neumokoko biziekin nahastu zuten "in vitro". Horren ondorioz, S kolonia bakterianoak eratu ziren, eta, beraz, zalantzarik gabe printzipio transformatzailea DNA zela frogatu zen.

DNA, printzipio transformatzaile gisa, unibertsalki onartua izateko hainbat urte pasa ziren arren, aurkikuntza hau genetika molekurraren jaiotzan giltzarria izan zen. Azkenik, DNAk herentzian zuen papera 1952an onartu zen Alfred Hershey eta Martha Chasen esperimentuei esker.

Molekularen karakterizazio kimikoari dagokionez, 1940an, Chargaffek DNAren base nitrogenatuen proportzioak ezagutzeko balio izan zuten esperimentu batzuk egin zituen. Purinen proportzioak pirimidinen berdinak zirela ikusi zuen ([A]=[T] eta [G]=[C]), eta, DNA molekula jakin batean, G+C kantitatea ez zela beti A+T kantitatearen berdina, % 36–70 artean aldakorra zela. Informazio honekin eta Rosalind Franklinek lortutako X izpien difrakzio datuekin, James Watson eta Francis Crickek DNAren egitura tridimentsionala azaltzen zuen helize bikoitzaren modeloa proposatu zuten 1953an.

Nature aldizkari zientifikoaren ale berean, Watsonek eta Crickek proposatzen zuten modeloaren alde agertzen ziren bost artikulu argitaratu ziren. Artikulu hauetan lehena, Franklin eta Raymond Goslingena, X izpien difrakzio datuekin modeloaren alde egiten zuena zen.

1962an, Franklin hil eta gero, Watsonek, Crickek eta Wilkinsek Medikuntzaren Nobel Saria jaso zuten. Gaur egun ere, zientziaren arloan, bizirik dirau ea aurkikuntzaren merezimendua norena den eztabaidak.

DNAren egitura

[aldatu | aldatu iturburu kodea]
DNAren egitura tridimentsionala.

DNA antiparaleloak diren bi desoxirribonukleotido-kateez osatuta dago. Kate hauen osagaiak, lehen aipatu bezala, azukre talde bat (desoxirribosa), fosfato talde bat eta base nitrogenatu bat (adenina (A), guanina (G), zitosina (C) edo timina (T)) dira. Bere egitura molekularrak bi kateek eratutako helize bikoitz baten forma hartzen du, base nitrogenatuak aurrez aurre kokaturik dituela, non A baten aurrean T bat kokatzen den beti eta G baten aurrean C bat. Base puriko bat (tamaina handiagokoa) base pirimidiniko baten (tamaina txikiagokoa) aurrean geratzen denez beti, katea bikoitzaren zabalera konstantea mantentzen da.

Fenomeno horri base-parekatzea deritzo, eta, hari esker, bi kateak osagarriak dira; hau da, kate baten baseen sekuentzia ezagutzen bada, bestearena ondoriozta daiteke. Osagarritasun honi esker, DNAk gordetzen duen informazioa bi kateetan agertuko da; hau da, bikoiztuta dago. Hau funtsezkoa izango da DNAren erreplikazio prozesuan.

DNA molekula egonkortzeko, parekatutako baseen artean hidrogeno zubiak eratzen dira. Lotura hau eratzeko, base batek karga partzial positiboa duen talde baten (?NH2 ala ?NH) hidrogeno atomo bat eman behar dio beste basean elektronegatiboki kargatuta dagoen talde bati (C=O ala N). Hidrogeno zubiak lotura kobalenteak baino ahulagoak dira; apurtu, eta berriro sor daitezke zailtasun handirik gabe. Hori dela eta, helize bikoitzaren bi kateak kremailera baten moduan banandu daitezke, indar mekaniko edo tenperaturaren eraginez (desnaturalizazio izeneko prozesua)

Hiru hidrogeno zubi dituen C≡G base parea
Bi hidrogeno zubi dituen A=T base parea

Base nitrogenatu guztiek ez dituzte hidrogeno zubi kopuru berak ematen, A=T bi hidrogeno zubi eratzen dituzte, eta, aldiz, C≡G, hiru. Beraz, C≡G base parea A=T baino sendoagoa da. Horren ondorioz, DNA helizearen sendotasuna bertan aurkitzen diren C≡G base pareen portzentaiaren eta molekularen luzeraren araberakoa izango da. C≡G base pare asko dituzten helize luzeen kateak A=T base pare asko dituzten helize laburren kateak baino indar handiagorekin daude lotuta.

Laborategian, sendotasun hori neurtzeko, hidrogeno zubiak apurtzeko behar den tenperatura neurtzen da; hau da, urtze tenperatura. Molekularen base pareen lotura guztiak puskatzean, bi kateak bereizi egiten dira.

DNA egituraren mailak

[aldatu | aldatu iturburu kodea]

DNAren egitura tridimentsionalean, hainbat maila bereizten dira:

Lehen mailako egitura

[aldatu | aldatu iturburu kodea]

Kateatutako nukleotido sekuentzia. Informazio genetikoa dagoen kate hauetan, desberdintasuna base nitrogenatuetan dago.

Bigarren mailako egitura

[aldatu | aldatu iturburu kodea]
  • Helize bikoitz itxurako egitura da. Informazio genetikoaren metaketa eta DNAren erreplikazio mekanismoa azaltzeko balio du. Watson eta Crickek aurkitu zuten Franklinen eta Wilkinsen X izpien difrakzioan oinarrituz.
  • Kate bikoitza da destrogiroa (eskuinerantz biratzen dena) edo lebogiroa (ezkerrerantz biratzen dena), DNA motaren arabera. Bi kateak osagarriak dira, kate bateko adenina eta guanina beste kateko timina eta zitosinarekin elkartzen baitira, hurrenez hurren. Gainera, bi kate hauek antiparaleloak dira.
  • Hiru DNA mota daude: DNA-A, DNA-B eta DNA-Z. B motakoa da ugariena eta Watson eta Crickek aurkitu zutena.

Hirugarren mailako egitura

[aldatu | aldatu iturburu kodea]
  • DNA leku murriztu batean antolatzeko moduari dagokiona da, kromosomak eratuz. Organismo eukarioto edo prokariotoek antolamendu desberdina dute.
  • Prokariotoetan, DNA super-helize bat balitz gisa zabaltzen da zitoplasman; orokorrean, eraztun itxura izaten du, eta proteina kantitate txiki bati lotuta egoten da. Mitokondrio edo kloroplastoetan ere aurki daiteke modu berean.
  • Eukariotoetan, kromosoma bakoitzean sartzen den DNA kantitatea oso handia denez, paketamendua konplexua, eta trinkoa da; horretarako beharrezkoa da proteinen presentzia.

DNAren funtzio biologikoen artean, informazioa gordetzea (geneak eta genoma), proteinen kodifikazioa (transkripzioa eta itzulpena) eta bere bikoizketa (DNAren erreplikazioa) dira. Azken horren bidez, zatiketa zelularrean informazioa zelula alabetara transmitituko dela ziurtatzen da.

CRISPR-Cas9, geneak mozteko guraizeak
DNA eredu gisa hartuz RNA polimerasak egiten duen mRNA-ren sintesia

Geneak eta genoma

[aldatu | aldatu iturburu kodea]

DNA bera bizi den organismoa eraiki eta mantentzeko beharrezkoa den informazioa gordetzen duen biltegia dela kontsidera genezake. Informazio hau, gero, belaunaldiz belaunaldi transmititua izango da. Organismoan funtzio hau betetzen duen informazioari genoma esaten zaio, eta, bertan dagoen DNAri, DNA genomikoa.

DNA genomikoa kromosometan antolatzen da, eta hori, batez ere, eukariotoen nukleo zelularrean dago; kantitate txiki bat ordea, mitokondrio eta kloroplastoetan ere badago. Prokariotoetan, nukleoide izeneko forma irregularreko gorputz batean dago DNA.[12]

DNA kodetzailea

[aldatu | aldatu iturburu kodea]

Genomaren informazio genetikoa genetan dago, eta organismoko informazio guzti horri genotipo deritzo. Genea herentziaren unitatea eta organismo baten ezaugarri konkretu batean eragina duen DNA zatia da, esaterako, begien kolorean.

Herentziaren funtzio nagusia proteinen zehazketa da, DNA baita proteina horiek ekoizteko errezeta. DNAren aldaketak, gehienetan, disfuntzio proteiko bat dakar, eta honek gaixotasun bat sortuko du. Baina, zenbait kasutan, aldaketa horiek onurak ekarriko dituzte, eta, horren ondorioz, izakiak hobeto egokituko dira beren ingurunera.

Giza gorputzak 30.000 proteina inguru ditu, eta hauek 20 aminoazido desberdinez osatuta daude. DNA molekula bat da, aminoazido hauen sekuentzia zehaztuko duena hain zuzen ere. Proteinen sintesian, DNAren gene bat irakurri, eta RNAn transkribatzen da. RNA horrek, DNA eta proteinak sintetizatzen dituen makineriaren artean, mezulari gisa jarduten du. Horregatik, RNA mezulari edo mRNA izena ematen zaio. mRNA hori, proteinen sintesian, eredu gisa erabiltzen da aminoazidoak ordena egokian lotzeko proteinak eraikitzean.

Biologia molekularraren dogma nagusiak dio informazioak DNA → RNA → proteina norabidea jarraitzen duela. Aitzitik, gaur egun, dogma hori zabaldu egin behar dela badakigu beste informazio fluxu batzuk aurkitu direlako, hala nola RNA birusak. Kasu honetan, informazioa RNAtik DNAra doa, eta hori alderantzizko transkripzio izenarekin ezagutzen da. Gainera, RNAra transkribatu eta proteinak eman gabe funtzionalak diren DNA sekuentziak ere badaude. Horiek RNA ez-kodetzaileak dira.

DNA ez-kodetzailea

[aldatu | aldatu iturburu kodea]

Organismo baten genomako DNA bi taldetan sailka daiteke: proteinak kodetzen dituena (geneak) eta kodetzen ez dituena. Espezie askotan, genomaren zati txiki batek bakarrik kodetzen ditu proteinak. Giza genomaren kasuan, % 1,5 inguru da proteinak kodetzeko gai; zati hauei exoi izena ematen zaie, eta 20.000–25.000 genek osatzen dute. Gainerako DNA ez-kodetzailea da, eta introi izena ematen zaie zati horiei.

DNA ez-kodetzailea proteinak sintetizatzeko gai ez diren DNA sekuentziak dira. Orain gutxi arte, DNA ez-kodetzaileak ez zuela erabilgarritasunik uste zen, baina azkenaldian egin diren ikerketek hori ez dela horrela erakutsi dute. Beste funtzioen artean, gene-adierazpena erregulatzen dute. Sekuentzia hauek "sekuentzia erregulatzaile" gisa ezagutzen dira, eta ikerlariek uste dute daudenetatik gutxi batzuk besterik ez direla identifikatu. Eukariotoen genoman hainbeste DNA ez-kodetzailearen presentzia eta espezieen arteko genoma tamainaren aldaketa misterio bat izaten jarraitzen du.

Bestalde, DNA sekuentzia batzuek egitura funtzioa dute kromosometan. Telomero eta zentromeroek proteinen gene kodifikatzaile gutxi dituzte, baina, kromosomen egitura egonkortzeko, garrantzitsuak dira.

Transkripzioa eta itzulpena

[aldatu | aldatu iturburu kodea]
Sakontzeko, irakurri: ?transkripzio (genetika)?
Sakontzeko, irakurri: ?itzulpen (genetika)?

DNA harizpian agertzen den nukleotido sekuentzia mRNA batera transkribatzen da. Sekuentzia hau, aldi berean, organismoarentzat ezinbestekoa den proteina bat emateko itzultzen da.

Lehenik eta behin, DNAn dagoen informazioa RNAra pasa behar da. Horretarako, DNA helizearen kate bat erabiltzen da. Ondoren, RNAn dagoen informazioa proteinak sintetizatzeko erabiliko da. Nukleotido sekuentzia eta proteina osatzen duten amnioazido sekuentziaren arteko erlazioa kode genetikoak ezartzen du. Hori beharrezkoa da itzulpen edo proteinen sintesian. Kode genetikoaren unitate kodetzailea hiru nukleotidotako talde bat da. Hirukote hauetako nukleotido bakoitza hizki batez adierazten da, nukleotido horrek duen base nitrogenatuaren arabera. DNAren hirukoteak mRNA emanez transkribatzen dira. Hirukote hauei kodoi izena ematen zaie. Ondoren, mRNA-ren kodoi bakoitzak aminoazido bat emango du erribosoman. Aminoazido hauek elkarren artean lotuko dira proteina osatuz.

DNAren erreplikazioa

[aldatu | aldatu iturburu kodea]
Sakontzeko, irakurri: ?DNAren erreplikazio?
DNAren erreplikazioa azaltzen duen eskema.

DNAren erreplikazioaren bidez, DNA molekularen kopia berdin-berdinak lortzen dira. Erreplikazioa beharrezkoa da informazio genetikoa belaunaldiz belaunaldi transmititua izateko. Horretarako, helizearen bi harizpiak banandu, eta kate berri bat sintetizatzen da bakoitzarentzat beraiek eredu gisa hartuz. Amaieran, hasierakoaren berdinak diren bi DNA molekula lortzen dira. Erreplikazio mota hau erdikontserbakorra izenez ezagutzen da kate bat mantendu eta bestea berria sintetizatzen delako.

Aldaketa kimikoak

[aldatu | aldatu iturburu kodea]
zitosina 5-metil-zitosina timina
Zitosinaren egitura metil taldearekin eta gabe. Desaminaren ondoren, 5-metil-zitosinak timinaren egitura bera du.

DNA-oinarrien aldaketak

[aldatu | aldatu iturburu kodea]

Gene-adierazpena DNA kromosometan biltzeko moduak eragiten du, kromatina izeneko egituran. Base-aldaketek parte har dezakete DNAren bilketan: gene-adierazpen baxua edo hura ez duten eskualdeek, normalean, zitosinaren oinarrien metilazio-maila handia izaten dute. Adibidez, zitosinaren metilizazioak 5-metil-zitosina sortzen du, eta hori garrantzitsua da X kromosomaren inaktibaziorako[13]. Batezbesteko metilazio-maila aldatu egiten da organismoen artean: Caenorhabditis elegans harrak ez du zitosinaren metilaziorik, eta ornodunek, berriz, maila altua dute —% 1 arte—; beren DNAren 5-metil-zitosina dauka[14]. 5-metil-zitosinak garrantzia izan arren, desaminatu daiteke timina-base bat sortzeko. Metilatutako zitosinak, beraz, bereziki sentikorrak dira mutazioen aurrean[15]. Zinetoplastoetan J-basea sortzeko, beste oinarri-aldaketa batzuk bakterioetan adeninaren metilazioa eta urazilaren glikosilazioa dira[16][17].

Ikus, gainera: ?Mutazio?

[[Fitxategi:Benzopyrene DNA adduct 1JDG.png|thumb|Benzopireno molekula, esaterako, [[tabako|tabakoaren] kean dagoen mutagenoa, DNA helize bati lotuta.[18]]] DNAren sekuentzia aldatzen duten mutageno mota askoren ondorioz kaltetu daiteke: agente alkilatzaileak, baita energia handiko erradiazio elektromagnetikoak ere, argi ultramoreak eta X izpiak, adibidez. Sortzen den DNAren kalte mota mutageno motaren araberakoa da. Adibidez, UV argiak DNA kaltetu dezake timina-dimeroak sortuz, Pirimidina-baseen arteko gurutzaketa-loturaz sortzen direnak[19]. Bestalde, erradikal askeak edo hidrogeno peroxido izeneko oxidatzaileek kalte ugari sortzen dituzte, oinarrien aldaketak, batez ere guanina, eta kate bikoitzeko hausturak barne (double-strand breaks)[20].? Edozein giza zeluletan, 500 base inguruk kalte oxidatiboa jasaten dute egunero[21][22]. Kalte oxidatibo hauetatik, kate bikoitzeko hausturak dira arriskutsuenak, konpontzen zailak baitira, eta DNAren sekuentziaren mutazio puntualak, txertaketak eta delezioak sor ditzakete, baita translokazio kromosomikoak ere[23].

Mutageno asko aldameneko bi base-pareren artean kokatzen dira; horregatik, agente interkalatzaileak deitzen zaie. Agente interkalatu gehienak molekula lauak eta aromatikoak dira, hala nola etidio bromuroa, daunomicina, doxorrubizina eta talidomida.? Agente interkalatzaile bat bi base pareren artean integratzeko, banandu egin behar dira DNA kateak desitxuratuz eta helize bikoitza irekiz. Honek transkripzioa eta DNAren erreplikazioa galarazten ditu toxikotasuna eta mutazioak eraginez. Hori dela eta, DNAren agente interkalanteak agente kartzinogenoak izan ohi dira: benzopirenoa, akridina, aflatoxina eta etidio bromuroa dira adibide ezagunak[24][25][26].? Hala ere, DNAren erreplikazioak eta DNAren transkripzioak inhibitzeko duten gaitasuna dela eta, toxina hauek ere erabiltzen dira kimioterapia minbizi-zelulen hazkuntza azkarra eragozteko[27].

DNA kaltetuak DNAren lesio espezifikoak ezagutzen dituzten konponketa mekanismo desberdinak aktibatzen dituen erantzuna abiarazten du, eta, jatorrizko DNA sekuentzia berreskuratzeko, berehala konpontzen dira?. Era berean, DNA kaltetuak zelula-zikloaren geldialdia eragiten du, eta horrek prozesu fisiologiko ugari aldatzea dakar, eta, aldi berean, sintesia, eta proteinen garraio eta degradazioa (ikus DNA kaltetuak kontrolatzeko puntua). Bestela, kalte genomikoa konpontzeko handiegia bada, kontrol-mekanismoek zelulen heriotzarekin amaituko den bide zelularraren aktibazioa eragingo dute.

  1. Euskaraz, badirudi zientziarako laburtzapenik erabiliena eta egokiena DNA dela gaur egun:
    EZ BAI
    (biologian)

    ARN, ADN, gene-adierazpena

    (biologian)

    RNA, DNA, gene-espresioa

    Elhuyarkoek irizpide hori erabiltzen dutela baieztatzen da erakunde hartako kide diren Antton Gurrutxagak, Saroi Jauregik eta Alfontso Mujikak 2004. urtean idatzitako beste artikulu honetan (Antton Gurrutxaga, Saroi Jauregi, Alfontso Mujika: ?Zuzenketen kudeaketa eta hizkuntz zerbitzuak?, Senez, 27. zenbakia, 2004) ere: ?Elhuyarren irizpidea da ingelesezko siglak erabiltzea: RNA eta DNA?.
    • EIMAk, Biologiako ikasliburuetarako, DNA forma erabiltzea hobesten du (EIMA: Zientzia eta teknikako euskara arautzeko gomendioak[Betiko hautsitako esteka], Eusko Jaurlaritzaren Argitalpen Zerbitzu Nagusia, 2011).
    • Azkenik, Berria egunkarian bilaketa eginda (2025-08-14ko 22:00ak diren honetan), 106 aldiz azaltzen da ?ADN?, eta 317 aldiz ?DNA?. Argia aldizkariko bilagailuak ez du zenbaketarik egiten, baina Googlen ?ADN site:argia.com? bilaketa eginda (egun eta ordu berean), 99 emaitza ateratzen dira; ?DNA site:argia.com? bilaketarekin, berriz, 165.

Erreferentziak

[aldatu | aldatu iturburu kodea]
  1. (Gaztelaniaz) Malavé, Dr Antonio Alcalá. (2025-08-14). Genética de la emoción: El origen de la enfermedad. Penguin Random House Grupo Editorial Espa?a ISBN 978-84-9069-206-6. (kontsulta data: 2025-08-14).
  2. (Gaztelaniaz) Mazzotta, Guillermo Cejas. (2000). Identificación por ADN. Ediciones Jurídicas Cuyo ISBN 978-987-527-014-5. (kontsulta data: 2025-08-14).
  3. ?Publication Name:? web.archive.org 2025-08-14 (kontsulta data: 2025-08-14).
  4. (Ingelesez) Dahm, Ralf. (2025-08-14). ?Friedrich Miescher and the discovery of DNA? Developmental Biology 278 (2): 274–288.  doi:10.1016/j.ydbio.2004.11.028. ISSN 0012-1606. (kontsulta data: 2025-08-14).
  5. ?Building Life On Earth? www.terradaily.com (kontsulta data: 2025-08-14).
  6. Dahm, Ralf. (2008-01). ?Discovering DNA: Friedrich Miescher and the early years of nucleic acid research? Human Genetics 122 (6): 565–581.  doi:10.1007/s00439-007-0433-0. ISSN 1432-1203. PMID 17901982. (kontsulta data: 2025-08-14).
  7. (Ingelesez) Levene, P. A.. (2025-08-14). ?THE STRUCTURE OF YEAST NUCLEIC ACID IV. AMMONIA HYDROLYSIS? Journal of Biological Chemistry 40 (2): 415–424. ISSN 0021-9258. (kontsulta data: 2025-08-14).
  8. ?Wayback Machine? web.archive.org 2025-08-14 (kontsulta data: 2025-08-14).
  9. Astbury, W. (1947). ?Nucleic acid?. Symp. SOC. Exp. Bbl 1 (66).
  10. Lorenz, M G; Wackernagel, W. (1994-09). ?Bacterial gene transfer by natural genetic transformation in the environment.? Microbiological Reviews 58 (3): 563–602. ISSN 0146-0749. PMID 7968924. (kontsulta data: 2025-08-14).
  11. ?Journal of Experimental Medicine | Rockefeller University Press? rupress.org (kontsulta data: 2025-08-14).
  12. (Ingelesez) Thanbichler, Martin; Wang, Sherry C.; Shapiro, Lucy. (2005). ?The bacterial nucleoid: A highly organized and dynamic structure? Journal of Cellular Biochemistry 96 (3): 506–521.  doi:10.1002/jcb.20519. ISSN 1097-4644. (kontsulta data: 2025-08-14).
  13. Klose, Robert J.; Bird, Adrian P.. (2006-02). ?Genomic DNA methylation: the mark and its mediators? Trends in Biochemical Sciences 31 (2): 89–97.  doi:10.1016/j.tibs.2005.12.008. ISSN 0968-0004. (kontsulta data: 2025-08-14).
  14. (Ingelesez) Bird, Adrian. (2025-08-14). ?DNA methylation patterns and epigenetic memory? Genes & Development 16 (1): 6–21.  doi:10.1101/gad.947102. ISSN 0890-9369. PMID 11782440. (kontsulta data: 2025-08-14).
  15. (Ingelesez) Walsh, C. P.; Xu, G. L.. (2006). Doerfler, Walter ed. ?Cytosine Methylation and DNA Repair? DNA Methylation: Basic Mechanisms (Springer): 283–315.  doi:10.1007/3-540-31390-7_11. ISBN 978-3-540-31390-8. (kontsulta data: 2025-08-14).
  16. (Ingelesez) Ratel, David; Ravanat, Jean-Luc; Berger, Fran?ois; Wion, Didier. (2006-03). ?N6-methyladenine: the other methylated base of DNA? BioEssays 28 (3): 309–315.  doi:10.1002/bies.20342. ISSN 0265-9247. PMID 16479578. PMC PMC2754416. (kontsulta data: 2025-08-14).
  17. Gommers-Ampt, Janet H.; Van Leeuwen, Fred; de Beer, Antonius L.J.; Vliegenthart, Johannes F.G.; Dizdaroglu, Miral; Kowalak, Jeffrey A.; Crain, Pamela F.; Borst, Piet. (1993-12). ?β-d-glucosyl-hydroxymethyluracil: A novel modified base present in the DNA of the parasitic protozoan T. brucei? Cell 75 (6): 1129–1136.  doi:10.1016/0092-8674(93)90322-h. ISSN 0092-8674. (kontsulta data: 2025-08-14).
  18. PDB 1JDG-tik sortua
  19. (Ingelesez) Douki, Thierry; Reynaud-Angelin, Anne; Cadet, Jean; Sage, Evelyne. (2025-08-14). ?Bipyrimidine Photoproducts Rather than Oxidative Lesions Are the Main Type of DNA Damage Involved in the Genotoxic Effect of Solar UVA Radiation? Biochemistry 42 (30): 9221–9226.  doi:10.1021/bi034593c. ISSN 0006-2960. (kontsulta data: 2025-08-14).
  20. Cadet, J., Delatour, T., Douki, T., Gasparutto, D., Pouget, J., Ravanat, J., Sauvaigo, S. (1999). ?Hydroxyl radicals and DNA base damage?. Mutat Res 424 (1-2): 9-21. PMID 10064846
  21. Shigenaga, M., Gimeno, C., Ames, B. (1989). ?Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of in vivo oxidative DNA damage?. Proc Natl Acad Sci U S A 86 (24): 9697-701. PMID 2602371.
  22. (Ingelesez) Cathcart, R; Schwiers, E; Saul, R L; Ames, B N. (1984-09). ?Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage.? Proceedings of the National Academy of Sciences 81 (18): 5633–5637.  doi:10.1073/pnas.81.18.5633. ISSN 0027-8424. PMID 6592579. PMC PMC391764. (kontsulta data: 2025-08-14).
  23. (Ingelesez) Valerie, Kristoffer; Povirk, Lawrence F.. (2003-09). ?Regulation and mechanisms of mammalian double-strand break repair? Oncogene 22 (37): 5792–5812.  doi:10.1038/sj.onc.1206679. ISSN 1476-5594. (kontsulta data: 2025-08-14).
  24. Ferguson, L., Denny, W. (1991). ?The genetic toxicology of acridines?. Mutat Res 258 (2): 123-60. PMID 1881402
  25. Jeffrey, Alan M.. (2025-08-14). ?DNA modification by chemical carcinogens? Pharmacology & Therapeutics 28 (2): 237–272.  doi:10.1016/0163-7258(85)90013-0. ISSN 0163-7258. (kontsulta data: 2025-08-14).
  26. Stephens, Trent D; Bunde, Carolyn J. W; Fillmore, Bradley J. (2025-08-14). ?Mechanism of action in thalidomide teratogenesis? Biochemical Pharmacology 59 (12): 1489–1499.  doi:10.1016/S0006-2952(99)00388-3. ISSN 0006-2952. (kontsulta data: 2025-08-14).
  27. (Ingelesez) Brana, M. F.; Cacho, M.; Gradillas, A.; Pascual-Teresa, B. de; Ramos, A.. ?Intercalators as Anticancer Drugs? Current Pharmaceutical Design 7 (17): 1745–1780.  doi:10.2174/1381612013397113. (kontsulta data: 2025-08-14).

Bibliografía

[aldatu | aldatu iturburu kodea]

Ikus, gainera

[aldatu | aldatu iturburu kodea]

Kanpo estekak

[aldatu | aldatu iturburu kodea]
尿多什么原因 比萨斜塔为什么是斜的 鼻子经常出血是什么病征兆 小孩睡不着觉是什么原因 抵抗力差是什么原因
水军是什么意思 无印良品属于什么档次 ein是什么牌子 城镇户口是什么意思 减脂喝什么茶最有效
水瓶座男生喜欢什么样的女生 肇庆有什么大学 五什么四什么 爱新觉罗是什么意思 纳肛是什么意思
前列腺炎是什么症状 细思极恐是什么意思 最好的止疼药是什么药 什么是细胞 皮试阳性是什么意思
梦见磨面粉是什么意思clwhiglsz.com 新五行属什么hebeidezhi.com 囊肿有什么症状hcv8jop2ns4r.cn 甲状腺是什么引起的hcv9jop1ns9r.cn 插科打诨是什么意思hcv8jop5ns5r.cn
忌诸事不宜什么意思hcv9jop7ns4r.cn 女性肛门瘙痒用什么药hcv9jop0ns9r.cn 子宫肌瘤术后吃什么好hcv7jop5ns0r.cn 高尿酸血症吃什么药hcv8jop5ns9r.cn 面包是什么意思jingluanji.com
一什么老虎hcv8jop5ns8r.cn 丼什么意思hcv9jop5ns5r.cn 09年是什么年hcv9jop2ns8r.cn 身在其位必谋其职是什么意思hcv9jop6ns8r.cn 下身瘙痒用什么药hcv9jop3ns1r.cn
宝宝大便有泡沫是什么原因hcv7jop9ns4r.cn 1977年什么命hcv8jop9ns3r.cn 高血钾有什么症状hcv8jop1ns3r.cn 脂溢性皮炎有什么症状hcv8jop9ns2r.cn 自得其乐是什么意思hcv8jop8ns8r.cn
百度